LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 ### M.Sc. DEGREE EXAMINATION - CHEMISTRY ### FIRST SEMESTER - NOVEMBER 2011 ## CH 1808 - QUANTUM CHEMISTRY & GROUP THEORY | Date: 05-11-2011 | Dept. No. | Max.: 100 Marks | |-------------------|-----------|-----------------| | Time: 1:00 - 4:00 | L | | #### **PART-A** Answer **ALL** questions $(10 \times 2 = 20)$ - 1. How much distance is away the point (5, 120°, 60°) from the origin? - 2. Represent the following complex numbers in the form of Euler formula. - (i) $1/\sqrt{2} + (1/\sqrt{2})i$ - (ii) $\frac{1}{2} + (\sqrt{3}/2)i$ - 3. Normalize exp(imx) for $0 \le x \le 2\pi$ - **4.** Evaluate ABCx³ if $A=d^2/dx^2$, B= x+3 and C = d/dx - **5.** Write the Hamiltonian for H_2^+ and explain the terms involved. - **6.** Calculate the trace of the transformation matrix of the operation S₂. - 7. Obtain the symmetry operation equivalent to each of the fol--lowing - (i) C_4^6 - (ii) S_4^2 - **8.** Suggest a possible electronic configuration for the term symbol ${}^{3}P_{2}$ - **9.** What is a Hartree? Give its value. - **10.** Mention Born-oppenheimer approximation with an example. ### **PART-B** ### Answer any EIGHT questions $(8 \times 5 = 40)$ - **11.** Show that for $0 \le x \le a$, $\sin(2\pi/a)x$ is orthogonal to $\sin(3\pi/a)x$. - 12. State and explain the postulates of quantum mechanics - **13.** Evaluate the following for a particle in 1D box: (i) $< p_x > (ii) p_x^2 \Psi$. Comment on your results. - **14.**The rotational spectral lines of ¹H³⁵Cl are equally spaced by 20.8 cm⁻¹. Calculate the inter nuclear distance of the molecule. - **15.**Get an expression for the total energy of a simple harmonic oscillator in terms of its amplitude and frequency. - **16.** Evaluate the spherical harmonics $Y_{0,0}$. - **17.** Discuss the Pauli principle of anti-symmetric wave function. - **18.** What is a Secular determinant? Write down the determinants for the excited state of He atom. - **19.** Obtain the value of $[x, p_x^2]$. Mention its physical significance. - 20. Outline the salient features of VB(Heitler-London) theory as applied to Hydrogen molecule. - **21.** The molecule ethylene belongs to D_{2h} point group. Identify the order, number and the dimensions of the irreducible representations. - **22.** Contruct the C_{3v} character table using great orthogonality theorem. # **PART-C** Answer any **FOUR** questions $(4 \times 10 = 40)$ - **23.** Set up the Schrodinger equation for a particle in 1D box and hence solve for its energy and wave function. - 24. (a) Define the following. - (i) Associated Legendre equation - (ii) Associated Legendre polynomials - (iii) Legendre polynomials - (b) Get the following polynomial functions for a rigid rotor: - (i) $P_2^1(\cos\theta)$ - (ii) $P_3(\cos\theta)$ - 25. (a) Define the following. - (i) Hermite equation - (ii)Hermite polynomials - (b) Obtain the following Hermite polynomials for (i) $$n = 0$$ (ii) $$n = 1$$ (iii) $$n = 3$$ - **26.** (a) Find out the most probable distance of 1s electron of hydrogen atom using the wave function $\Psi_{1s} = 1/(\pi)^{1/2} (Z/a_0)^{3/2} \exp(-Zr/a_0)$. Calculate the values for the atoms from hydrogen to boron and offer your comments upon their ionization potentials. - (b) What are the three important approximations of Huckel LCAO-MO theory? - **27.** (a) State the variation principle and apply it to get an upper bound to the ground state energy of the particles in a 1D box of length a, using the trial function $\Psi = x^2(a-x)$. - (b) Find the Huckel molecular orbitals and energies for allyl radical. **28.** Work out the hybridization scheme for σ bonding by boron in BF₃ molecules for D_{3h} symmetry. The D_{3h} character table is provided. | D _{3h} | Е | 2C ₃ | 3C' ₂ | σ_{h} | 2S ₃ | $3\sigma_{v}$ | | | |-----------------|----|-----------------|------------------|---------------------|-----------------|---------------|----------------|-----------------| | A' ₁ | +1 | +1 | +1 | +1 | +1 | +1 | - | x^2+y^2, z^2 | | A' ₂ | +1 | +1 | -1 | +1 | +1 | -1 | R _z | - | | E' | +2 | -1 | 0 | +2 | -1 | 0 | (x, y) | (x^2-y^2, xy) | | A" ₁ | +1 | +1 | +1 | -1 | -1 | -1 | - | - | | A"2 | +1 | +1 | -1 | -1 | -1 | +1 | Z | - | | Е" | +2 | -1 | 0 | -2 | +1 | 0 | (R_x, R_y) | (xz, yz) |