LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2011

CH 1808 - QUANTUM CHEMISTRY & GROUP THEORY

Date: 05-11-2011	Dept. No.	Max.: 100 Marks
Time: 1:00 - 4:00	L	

PART-A

Answer **ALL** questions $(10 \times 2 = 20)$

- 1. How much distance is away the point (5, 120°, 60°) from the origin?
- 2. Represent the following complex numbers in the form of Euler formula.
 - (i) $1/\sqrt{2} + (1/\sqrt{2})i$
- (ii) $\frac{1}{2} + (\sqrt{3}/2)i$
- 3. Normalize exp(imx) for $0 \le x \le 2\pi$
- **4.** Evaluate ABCx³ if $A=d^2/dx^2$, B= x+3 and C = d/dx
- **5.** Write the Hamiltonian for H_2^+ and explain the terms involved.
- **6.** Calculate the trace of the transformation matrix of the operation S₂.
- 7. Obtain the symmetry operation equivalent to each of the fol--lowing
 - (i) C_4^6

- (ii) S_4^2
- **8.** Suggest a possible electronic configuration for the term symbol ${}^{3}P_{2}$
- **9.** What is a Hartree? Give its value.
- **10.** Mention Born-oppenheimer approximation with an example.

PART-B

Answer any EIGHT questions $(8 \times 5 = 40)$

- **11.** Show that for $0 \le x \le a$, $\sin(2\pi/a)x$ is orthogonal to $\sin(3\pi/a)x$.
- 12. State and explain the postulates of quantum mechanics
- **13.** Evaluate the following for a particle in 1D box: (i) $< p_x > (ii) p_x^2 \Psi$. Comment on your results.
- **14.**The rotational spectral lines of ¹H³⁵Cl are equally spaced by 20.8 cm⁻¹. Calculate the inter nuclear distance of the molecule.
- **15.**Get an expression for the total energy of a simple harmonic oscillator in terms of its amplitude and frequency.
- **16.** Evaluate the spherical harmonics $Y_{0,0}$.
- **17.** Discuss the Pauli principle of anti-symmetric wave function.

- **18.** What is a Secular determinant? Write down the determinants for the excited state of He atom.
- **19.** Obtain the value of $[x, p_x^2]$. Mention its physical significance.
- 20. Outline the salient features of VB(Heitler-London) theory as applied to Hydrogen molecule.
- **21.** The molecule ethylene belongs to D_{2h} point group. Identify the order, number and the dimensions of the irreducible representations.
- **22.** Contruct the C_{3v} character table using great orthogonality theorem.

PART-C

Answer any **FOUR** questions $(4 \times 10 = 40)$

- **23.** Set up the Schrodinger equation for a particle in 1D box and hence solve for its energy and wave function.
- 24. (a) Define the following.
 - (i) Associated Legendre equation
 - (ii) Associated Legendre polynomials
 - (iii) Legendre polynomials
 - (b) Get the following polynomial functions for a rigid rotor:
 - (i) $P_2^1(\cos\theta)$
- (ii) $P_3(\cos\theta)$
- 25. (a) Define the following.
 - (i) Hermite equation
 - (ii)Hermite polynomials
 - (b) Obtain the following Hermite polynomials for

(i)
$$n = 0$$

(ii)
$$n = 1$$

(iii)
$$n = 3$$

- **26.** (a) Find out the most probable distance of 1s electron of hydrogen atom using the wave function $\Psi_{1s} = 1/(\pi)^{1/2} (Z/a_0)^{3/2} \exp(-Zr/a_0)$. Calculate the values for the atoms from hydrogen to boron and offer your comments upon their ionization potentials.
 - (b) What are the three important approximations of Huckel LCAO-MO theory?
- **27.** (a) State the variation principle and apply it to get an upper bound to the ground state energy of the particles in a 1D box of length a, using the trial function $\Psi = x^2(a-x)$.
 - (b) Find the Huckel molecular orbitals and energies for allyl radical.

28. Work out the hybridization scheme for σ bonding by boron in BF₃ molecules for D_{3h} symmetry. The D_{3h} character table is provided.

D _{3h}	Е	2C ₃	3C' ₂	σ_{h}	2S ₃	$3\sigma_{v}$		
A' ₁	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2
A' ₂	+1	+1	-1	+1	+1	-1	R _z	-
E'	+2	-1	0	+2	-1	0	(x, y)	(x^2-y^2, xy)
A" ₁	+1	+1	+1	-1	-1	-1	-	-
A"2	+1	+1	-1	-1	-1	+1	Z	-
Е"	+2	-1	0	-2	+1	0	(R_x, R_y)	(xz, yz)

